为医学图像评估构建准确和强大的人工智能系统,不仅需要高级深度学习模型的研究和设计,还需要创建大型和策划的注释训练示例。然而,构造这种数据集通常非常昂贵 - 由于注释任务的复杂性和解释医学图像所需的高度专业知识(例如,专家放射科医师)。为了对此限制来说,我们提出了一种基于对比学习和在线特征聚类的丰富图像特征自我监督学习方法。为此目的,我们利用各种方式的大超过100,000,000个医学图像的大型训练数据集,包括放射线照相,计算机断层扫描(CT),磁共振(MR)成像和超声检查。我们建议使用这些功能来指导在各种下游任务的监督和混合自我监督/监督制度的模型培训。我们突出了这种策略对射线照相,CT和MR:1的挑战性图像评估问题的许多优点,与最先进的(例如,检测3-7%的AUC升压为3-7%胸部射线照相扫描的异常和脑CT的出血检测); 2)与使用无预先训练(例如,83%,在培训MR扫描MR扫描中的脑转移的模型时,在训练期间训练期间的模型收敛在训练期间的培训期高达85%。 3)对各种图像增强的鲁棒性增加,例如在场中看到的数据变化的强度变化,旋转或缩放反射。
translated by 谷歌翻译
Driving through pothole infested roads is a life hazard and economically costly. The experience is even worse for motorists using the pothole filled road for the first time. Pothole-filled road networks have been associated with severe traffic jam especially during peak times of the day. Besides not being fuel consumption friendly and being time wasting, traffic jams often lead to increased carbon emissions as well as noise pollution. Moreover, the risk of fatal accidents has also been strongly associated with potholes among other road network factors. Discovering potholes prior to using a particular road is therefore of significant importance. This work presents a successful demonstration of sensor-based pothole mapping agent that captures both the pothole's depth as well as its location coordinates, parameters that are then used to generate a pothole map for the agent's entire journey. The map can thus be shared with all motorists intending to use the same route.
translated by 谷歌翻译
Bayesian networks (BNs) are attractive, because they are graphical and interpretable machine learning models. However, exact inference on BNs is time-consuming, especially for complex problems. To improve the efficiency, we propose a fast BN exact inference solution named Fast-BNI on multi-core CPUs. Fast-BNI enhances the efficiency of exact inference through hybrid parallelism that tightly integrates coarse- and fine-grained parallelism. We also propose techniques to further simplify the bottleneck operations of BN exact inference. Fast-BNI source code is freely available at https://github.com/jjiantong/FastBN.
translated by 谷歌翻译
Domain shift is a well-known problem in the medical imaging community. In particular, for endoscopic image analysis where the data can have different modalities the performance of deep learning (DL) methods gets adversely affected. In other words, methods developed on one modality cannot be used for a different modality. However, in real clinical settings, endoscopists switch between modalities for better mucosal visualisation. In this paper, we explore the domain generalisation technique to enable DL methods to be used in such scenarios. To this extend, we propose to use super pixels generated with Simple Linear Iterative Clustering (SLIC) which we refer to as "SUPRA" for SUPeRpixel Augmented method. SUPRA first generates a preliminary segmentation mask making use of our new loss "SLICLoss" that encourages both an accurate and color-consistent segmentation. We demonstrate that SLICLoss when combined with Binary Cross Entropy loss (BCE) can improve the model's generalisability with data that presents significant domain shift. We validate this novel compound loss on a vanilla U-Net using the EndoUDA dataset, which contains images for Barret's Esophagus and polyps from two modalities. We show that our method yields an improvement of nearly 25% in the target domain set compared to the baseline.
translated by 谷歌翻译
最小的侵入性手术是高度操作员,依赖于冗长的程序时间,导致患者疲劳和风险。为了减轻这些风险,实时系统可以通过提供对场景的清晰了解并避免在操作过程中避免错误估计来帮助外科医生导航和跟踪工具。尽管已经朝这个方向做出了几项努力,但缺乏不同的数据集,并且非常动态的场景及其在每个患者中的可变性都需要实现强大的系统的重大障碍。在这项工作中,我们对最新基于机器学习的方法进行了系统评价,包括手术工具定位,细分,跟踪和3D场景感知。此外,我们提出了这些发明方法的当前差距和方向,并在这些方法的临床整合背后提供了合理的理性。
translated by 谷歌翻译
在为医疗保健领域开发监督的机器学习解决方案时,具有高质量地面真实标签的大规模数据的可用性是一个挑战。尽管临床工作流程中的数字数据量正在增加,但大多数数据都分布在临床站点上并受到保护以确保患者隐私。放射学读数和处理大型临床数据给可用资源带来了重大负担,这是机器学习和人工智能发挥关键作用的地方。用于肌肉骨骼(MSK)诊断的磁共振成像(MRI)是一个例子,其中扫描具有大量信息,但需要大量时间阅读和标记。自我监督的学习(SSL)可以是处理缺乏地面真相标签的解决方案,但通常需要在训练阶段进行大量培训数据。本文中,我们提出了一个基于切片的自制深度学习框架(SB-SSL),这是一种基于切片的新型范式,用于使用膝盖MRI扫描对异常进行分类。我们表明,在有限数量的情况下(<1000),我们提出的框架能够以89.17%的精度识别前交叉韧带撕裂,而AUC为0.954,不超过最先进的情况,而无需使用外部数据。在训练期间。这表明我们提出的框架适用于有限的数据制度中的SSL。
translated by 谷歌翻译
微创手术中的手术工具检测是计算机辅助干预措施的重要组成部分。当前的方法主要是基于有监督的方法,这些方法需要大量的完全标记的数据来培训监督模型,并且由于阶级不平衡问题而患有伪标签偏见。但是,带有边界框注释的大图像数据集通常几乎无法使用。半监督学习(SSL)最近出现了仅使用适度的注释数据训练大型模型的一种手段。除了降低注释成本。 SSL还显示出希望产生更强大和可推广的模型。因此,在本文中,我们在手术工具检测范式中介绍了半监督学习(SSL)框架,该框架旨在通过知识蒸馏方法来减轻培训数据的稀缺和数据失衡。在拟议的工作中,我们培训了一个标有数据的模型,该模型启动了教师学生的联合学习,在该学习中,学生接受了来自未标记数据的教师生成的伪标签的培训。我们提出了一个多级距离,在检测器的利益区域头部具有基于保证金的分类损失函数,以有效地将前景类别与背景区域隔离。我们在M2CAI16-Tool-locations数据集上的结果表明,我们的方法在不同的监督数据设置(1%,2%,5%,注释数据的10%)上的优越性,其中我们的模型可实现8%,12%和27的总体改善在最先进的SSL方法和完全监督的基线上,MAP中的%(在1%标记的数据上)。该代码可在https://github.com/mansoor-at/semi-supervise-surgical-tool-det上获得
translated by 谷歌翻译
对未知环境的探索是机器人技术中的一个基本问题,也是自治系统应用中的重要组成部分。探索未知环境的一个主要挑战是,机器人必须计划每个时间步骤可用的有限信息。尽管大多数当前的方法都依靠启发式方法和假设来根据这些部分观察来规划路径,但我们提出了一种新颖的方式,通过利用3D场景完成来将深度学习整合到探索中,以获取知情,安全,可解释的探索映射和计划。我们的方法,SC-explorer,使用新型的增量融合机制和新提出的分层多层映射方法结合了场景的完成,以确保机器人的安全性和效率。我们进一步提出了一种信息性的路径计划方法,利用了我们的映射方法的功能和新颖的场景完整感知信息增益。虽然我们的方法通常适用,但我们在微型航空车辆(MAV)的用例中进行了评估。我们仅使用移动硬件彻底研究了高保真仿真实验中的每个组件,并证明我们的方法可以使环境的覆盖范围增加73%,而不是基线,而MAP准确性的降低仅最少。即使最终地图中未包含场景的完成,我们也可以证明它们可以用于指导机器人选择更多信息的路径,从而加快机器人传感器的测量值35%。我们将我们的方法作为开源。
translated by 谷歌翻译
与汽车和其他公路车辆相比,公共汽车和重型车辆由于其尺寸较大而具有更多的盲点。因此,这些重型车辆造成的事故更具致命性,并给其他道路使用者造成严重伤害。这些可能的盲点碰撞可以使用基于视觉的对象检测方法来尽早确定。然而,现有的基于最新视觉的对象检测模型在很大程度上依赖于单个功能描述符来做出决策。在这项研究中,提出了基于高级功能描述符的两个卷积神经网络(CNN)的设计,并提出了它们与更快的R-CNN的集成,以检测重型车辆的盲点碰撞。此外,提出了一种融合方法,以整合两个预训练的网络(即Resnet 50和Resnet 101),用于提取高水平的特征以进行盲点车辆检测。功能的融合显着提高了更快的R-CNN的性能,并优于现有的最新方法。两种方法均在公共汽车的自我录制的盲点车辆检测数据集和用于车辆检测的在线LISA数据集上进行了验证。对于两种提出的方​​法,对于自记录的数据集,可获得3.05%和3.49%的虚假检测率(FDR),使这些方法适用于实时应用。
translated by 谷歌翻译
可编程逻辑控制器(PLC)推动对社会至关重要的工业过程,例如水处理和分配,电力和燃料网络。搜索引擎(例如Shodan)强调说,可编程逻辑控制器(PLC)经常暴露于Internet,这是安全设置的错误配置的主要原因之一。这导致了一个问题 - 为什么这些错误配置会发生,具体而言,安全控制的可用性是否起作用?迄今为止,尚未研究配置PLC安全机制的可用性。我们通过基于任务的研究和随后的半结构化访谈(n = 19)介绍了第一次调查。我们探索PLC连接配置和两个关键安全机制的可用性(即访问级别和用户管理)。我们发现使用不熟悉的标签,布局和误导性术语加剧了已经复杂的配置安全机制的过程。我们的结果揭示了对安全控制的各种看法,以及设计约束(例如,安全性和缺乏定期更新)如何(由于这种系统的长期性质),为实现现代HCI和可用性原则的实现提供了重大挑战。基于这些发现,我们提供了设计建议,以在工业环境中与IT同行提供可用的安全性。
translated by 谷歌翻译